
Implementation of Extensible
 Authentication Protocol in OPNET Modeller

Abstract—As wireless technology is becoming more and
more prevalent; security in such networks is becoming a
challenging issue and is in great demand. One of the most
powerful tools in this area which helps to simulate and
evaluate the behaviour of networks and protocols is
OPtimised Network Engineering Tool (OPNET). Although
OPNET has covered a wide range of models and a variety of
protocols, there is no implementation of security in it. In this
paper we implement and simulate Extensible Authentication
Protocol (EAP) using discrete event simulator OPNET
modeller. EAP is an authentication framework which is
compatible with IEEE 802.1x the security framework for
IEEE 802 family.

Keywords-WLAN; Security; Authentication; EAP; OPNET;
Simulation;

I. INTRODUCTION

Widespread acceptance and implementation of
wireless local area networks (WLANs) have also brought
concerns about the security of these networks.
Transmitting data via an air interface rather than a more
secure physical conduit brings along with it certain
inherent vulnerabilities to security [1].

 Since IEEE introduced WEP [2] for the security of
IEEE 802.11 [2], up to the latest release of 802.1X [3] in
2010, a multitude of methods and protocols have been
proposed [4, 5, 6, 7]. But none of them achieved the
success and acceptability of EAP [8]. EAP is commonly
used for authentication in port-based access control, and
originally developed for point-to-point protocol (PPP) [9]
connections. We give a brief overview of EAP in the next
section.

OPNET [10, 11] as a powerful simulation tool is
applied to implement EAP and evaluate and measure
parameters such as delay and overhead in a wireless test
bed, as there is no evidence of consideration of security in
it. With this measurement we can define how wireless
networks can be affected by security consideration.

The rest of the paper is organized as follow. In next
section we briefly discus EAP. In section 3 we present
modular concept of OPNET. Section 4 gives details about

the model we are implementing. Validation of this work
is presented in section 5. Finally in section 6 the
conclusion and future work is provided.

II. EAP

In this section we only focus on details which we
utilized to implement EAP. For further information refer
to [3]. EAP is an authentication framework which
supports multiple authentication methods. EAP typically
runs directly over data link layers such as Point-to-Point
Protocol (PPP) or IEEE 802, without requiring IP.

A. Terminology

There are different terminologies due to different
standards, in this paper we refer to RFC 3748.
Authenticator: The end of the link initiating EAP
authentication. The term authenticator is used in IEEE
802.1X and has the same meaning in this paper.

Peer: The end of the link that responds to the
authenticator. In IEEE 802.1X, this end is known as the
Supplicant. In this paper this end of the link is called the
peer.

Backend Authentication Server: A backend
authentication server is an entity that provides an
authentication service to an authenticator. When used,
this server typically executes EAP methods for the
authenticator. This terminology is also used in IEEE
802.1X.

B. EAP Authentication Exchange Process
Step1. The authenticator sends a Request to

authenticate the peer. The Request has a Type field to
indicate what is being requested.

Step2. The peer sends a Response packet in reply to a
valid Request. As with the Request packet, the Response
packet contains a Type field, which corresponds to the
Type field of the Request.

Step3. The authenticator sends an additional Request
packet, and the peer replies with a Response. The

S. Saed Rezaie

Department of Electrical Engineering
Amirkabir University

Tehran, Iran
saed.rezaei@aut.ac.ir

S. Amir Hoseini

Department of Electrical Engineering
Amirkabir University

Tehran, Iran
a.hoseini@aut.ac.ir

H. Taheri

Department of Electrical Engineering
Amirkabir University

Tehran, Iran
htaheri@aut.ac.ir

sequence of Requests and Responses continues as long as
needed.

Step4. The conversation continues until the
authenticator cannot authenticate the peer, in which case
the authenticator transmits an EAP Failure (Code 4).

Alternatively, the authentication conversation can
continue until the authenticator determines that successful
authentication has occurred, in which case the
authenticator transmits an EAP Success (Code 3). Fig. 1
demonstrates the packet exchange between different
entities. Note that in this paper authenticator and server
merged into one node.

Figure 1. Packet exchange in EAP process

C. Encapsulation

The encapsulation of EAP over IEEE 802 is defined in
IEEE 802.1X and known as EAP over LANs or EAPOL.
EAPOL was originally designed for IEEE 802.3 Ethernet
in 802.1X-2001, but was clarified to suit other IEEE 802
LAN technologies such as IEEE 802.11 wireless LANs.
Encapsulation of EAP over different protocols is
illustrated in Fig. 2.

Figure 2. EAP encapsulation over different LAN technologies

As it is seen, several methods of EAP are available
and encapsulate in EAP Data field. Some have been
developed specifically for wireless networks in addition
to EAP methods existing for wired networks. This

includes a class of methods based on public key
infrastructure [12] and the use of certificates as well as a
class of methods that do not use certificates but
passwords for their authentication. A comparative study
of these methods can be found in [13].

In this paper EAP-MD5 [14] have been implemented
and analysed which is based on challenge-response
mechanism and due to [15] is one of the most implanting
protocols in authentication mechanisms. The packet
format of EAP-MD5 due to RFC 1994 consists of four
simple fields and is depicted in Fig. 3. Note that this
packet is encapsulated in data field of EAP packet.

Figure 3. EAP-MD5 packet format

Different code values correspond to different EAP
messages. Identifier field is the entity ID which creates
the packet, length field is used to show the entire packet
size. We use this format to simulate EAP in OPNET.

III. OPNET

OPNET is a vast software package with an extensive
set of features designed to support general network
modeling and to provide specific support for particular
types of network simulation projects. OPNET provides a
flexible, high-level programming language with extensive
support for communications and distributed systems. This
environment allows realistic modeling of all
communications protocols, algorithms, and transmission
technologies. OPNET supports model specification with
a number of tools or editors that capture the
characteristics of a modeled system’s behavior. Because
it is based on a suite of editors that address different
aspects of a model, OPNET is able to offer specific
capabilities to address the diverse issues encountered in
networks and distributed systems.

A. Hierarchical Architecture
To present the model developer with an intuitive

interface, the editors break down the required modeling
information in a manner that parallels the structure of
actual network systems. Thus, the model-specification
editors are organized in an essentially hierarchical
fashion. Model specifications performed in the Project
Editor rely on elements specified in the Node Editor; in
turn, when working in the Node Editor, the developer
makes use of models defined in the Process Editor. The
remaining editors are used to define various data models;
packet format editor, link model editor, etc.

The Network, Node, and Process modeling
environments are sometimes referred to as the modeling

domains of OPNET. The issues addressed by each
domain are summarized in TABLE I.

OPNET’s Process Editor expresses process models in
a language called Proto-C, which is specifically designed
to support development of protocols and algorithms.
Proto-C is based on a combination of state transition
diagrams (STDs), a library of high-level commands
known as Kernel Procedures, and the general facilities of
the C or C++ programming language.

TABLE I: OPNET Modeling Domains

OPNET Modeling Domains

Domain Editor Modeling Focus

Network

Project

Network topology described in terms of
subnetworks, nodes, links, and
geographical context.

Node Node Node internal architecture described in
terms of functional elements and data flow
between them.

Process Process Behavior of processes (protocols,
algorithms, applications), specified using
finite state machines and extended high-
level language.

Network Domain: The Network Domain’s role is to

define the topology of a communication network. The
communicating entities are called nodes. A network
model may make use of any number of node models.
Modelers can develop their own library of customized
node models, implementing any functionality they
require.

Node Domain: The Node Domain provides for the
modeling of communication devices that can be deployed
and interconnected at the network level. Node models are
developed in the Node Editor and are expressed in terms
of smaller building blocks called modules. Some modules
offer capability that is substantially predefined and can
only be configured through a set of built-in parameters.
These include various transmitters and receivers allowing
a node to be attached to communication links in the
network domain. Other modules, called processors, are
highly programmable, their behavior being prescribed by
an assigned process model.

Process model: Process models are developed using
the Process Editor. Processor modules are user-
programmable elements that are key elements of
communication nodes. Processes in OPNET are designed
to respond to interrupts and/or invocations. Interrupts
typically correspond to events such as messages arriving,
timers expiring, resources being released, or state changes
in other modules. As previously mentioned, processes are
extended by a language called Proto-C. Proto-C models
allow actions to be specified at various points in the finite
state machine. Since Proto-C is focused on modeling
protocols and algorithms, it provides an extensive library
of over 300 Kernel Procedures (also known as KPs).

IV. IMPLEMENTING EAP

Our scenario consists of two nodes in project domain
as illustrated in Fig. 4; an access point and a client.

The access point (AP) plays the role of Authenticator
as well as Backend Authentication Server simultaneously,
as it is defined in EAP terminology, while client
corresponds to peer.

A. Project Model
 In Fig. 4, project domain and the nodes insides are

presented.

Figure 4. Scenario Topology

Since these nodes are pre-defined, they look like each

other but their functionalities are different due to assigned
node model. Besides, as they are wireless, there isn’t any
link between them, otherwise a link model should have
been provided.

B. Packet Format Model
The packet format is designed in packet format editor.

It can be seen in Fig. 5, it is exactly same as the format
which is specified in the standard.

Figure 5. EAP Packet Format Designed in OPNET Packet Editor

All fields were explained earlier in section 2. This

packet type will be assigned to receiver and transmitter in
the node domain. Furthermore, this kind of traffic is
flowed in the network.

C. Node Model

In node model, processors, transceivers and streams
are applied to design the layered concept of protocols and
models. In this paper we use pre-defined wireless node
model to benefit from its useful mechanism and other
layers which are not necessary to implement.

The raw node model of mobile Wireless LAN station
is depicted in Fig. 6.

Figure 6. Pre-defined WLAN Node Model in OPNET

We modified this model as follow to encapsulate EAP
in wlan_mac_intf layer:

Figure 7. Modified WLAN Node Model

As it can be seen, an extra module is added to the
previous model in order to complete our node model.
Note that this model is applied for both AP and peer.

Figs. 6 and 7 recall the OSI layering model. This model
consists of a pair of transmitter-receiver and four
processors.

Source processor has the role of generating packets
and injecting traffic into the network. EAP_processor is
in charge of authentication and will be explained more in
the next section. wlan_mac_intf, encapsulates higher
layer PDUs into wireless_lan_mac which has the layer
two duties such as CSMA/CA and other MAC layer
mechanisms.

The solid streams are packet streams and dashed ones
are statistic streams. Wlan_port_rx0 and wlan_port_tx0
are radio receiver and transmitter respectively.

D. Process Model

In this section, we go into further details and explain
how EAP_processor in node model works. Process
domain consists of Finite State Machine(s) or FSMs;
hence we should design an FSM for each party.

Peer_processor and AP_processor FSMs are revealed
in Fig. 8 and Fig. 9 respectively. Red states are called
unforced states. It means whenever simulator reaches in
such states, it waits until the condition becomes true.
Conditions are those in parentheses and written in capital
letters. Dashed lines are conditional transitions. When the
condition is true, transition from one state to another
occurs and a function is executed. As previously
mentioned, in OPNET, conditions correspond to
interrupts. Here interrupts are of packet arrival types that
mean whenever a packet is received, transition takes
place and corresponding function is executed.

Figure 8. Peer Process Model

In our scenario, peer is the initiator of authentication

process. The packet arrival from source processor in node
model satisfies the condition PK_READY and starts to
transit to the next state. During transition, set_ID function
is executed. This function sets packet fields appropriately
and sends it via its radio transmitter in node model.

When process enters state 2 named wait for chall, it
pauses until an interrupt takes place. Now AP wireless
receiver in node model gets the packet. (In AP processor,

a structure is defined to keep information about each user
such as user name, password, status of authentication and
corresponding address). Through this arrival, ID_RCVD
condition (see Fig. 9) becomes true and chal_calc
procedure is executed. This procedure calculates
challenge string and sends the packet to the network, then
pauses in wait for hash state. Note that first state in this
FSM is a forced state and is used to initialize some
parameters. And the solid transition indicates that there is
no condition for moving from one state to another.

Now CHAL_RCVD condition in peer process model
is triggered, thus, process enters state wait for resp and
hash_calc is performed. In this function the hash value of
challenge string is calculated, all fields are filled with
proper values and the provided packet is sent to the
network.

Figure 9. AP Process Model

As soon as a packet containing hash value is received

in AP, HASH_RCVD condition is satisfied and
send_resp function is executed. This function compares
the newly arrived hash value with the one stored in its
database, if two values match, it generates a session key
for secondary communication encryption. When client
gets the response, AUTH_PASS condition becomes true
and FSM reaches in its final/initial state and waits for
other requests.

V. VALIDATION

Now it is time to run the simulation, after collecting
pre-configured statistical data. As it is revealed from our
topology (Fig. 5) there are a number of mobile nodes
randomly situated around an AP. Two scenarios are
considered to validate this model.

First we set wrong passwords for some clients and run
the simulation and throughput of each node is measured
separately, it can be seen in Fig. 10 that their connectivity
is cut, after a short time, due to authentication failure.
Node 0 has wrong information while node 1 is correctly
authenticated.

In the second scenario we measured end-to-end delay
for two cases; with and without authentication. And the
results show (see Fig. 11) that a slight increase is seen in

delay in initial phase in blue graph compared with the
original scenario without authentication (green graph).

Figure 10. Authentication Failure and Pass

We explain this pattern as follows. When peers start to

communicate, they need to be authenticated, and as they
start to send authentication request to AP simultaneously,
an excessive amount of packets are transmitted over the
air and it takes more time for packets to arrive to their
destination and this increase is inevitable. But after a
small period of time, when the authentication process is
over, the two graphs coincide.

Figure 11. Delay Comparison; With and Without Authentication

VI. CONCLUSION AND FUTURE WORK

In this work we implemented and simulated one of the

most practical authentication methods in OPNET
simulator and it worked properly. We saw that when a

node sends wrong parameters, it is not authenticated and
cannot communicate anymore. Furthermore we showed
that the throughput increases in initial phase because of
authentication process.

In future work other EAP methods are simulated and a
comparative study would be given between these
methods. We are also working on a secure and user
friendly method to improve authentication in WLANs.

REFERENCES
[1] R. Dantu, G. Clothier, and A. Atri, “EAP methods for wireless

networks,” Computer Standards & Interfaces
Vol. 29, Issue 3, Pages 289-30, March 2007.

[2] IEEE standard 802.11. [Online]. Pages 158-161 Available:
http://standards.ieee.org/getieee802/download/802.11-2007.pdf

[3] IEEE standard 802.1X. [Online]. Available:
http://standards.ieee.org/getieee802/download/802.1X-2010.pdf

[4] G. Ateniese, M. Steiner, and G. Tsudik, “New Multiparty
Authentication Services and Key Agreement Protocol,” in IEEE
Journal of Selected Areas in Communications, Vol 18, April 2000

[5] H. H. Ngo, X. Wu, P. D. Le, and B. Srinivasan, “An
Authentication Model for Wireless Network Services,” in 24th
IEEE International Conference on Advanced Information
Networking and Applications, Pages 996-1003, April 2010.

[6] M. Badra, A. Serhrouchni, and P. Urien, “A lightweight identity
authentication protocol for wireless networks,” in Computer
Communications Vol. 27, Issue 17, Pages 1738-45, November
2004.

[7] G. Yang, Q. Huang, D. S. Wong, and X. Deng, “Universal
Authentication Protocols for Anonymous Wireless
Communications,” IEEE Trans. on wireless communication, Vol.
9, No. 1, Pages 168-74 January 2010.

[8] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlsonand, and H.
Levkowetz, RFC 3748 “Extensible Authentication Protocol
(EAP),” June 2004 [Online]. Available:
http://tools.ietf.org/html/rfc3748

[9] W. Simpson. RFC 1661 “The Point-to-Point Protocol (PPP),”
[Online]. July 1994 Available: http://tools.ietf.org/html/rfc1661

[10] OPNET tutorial.
[11] K. Molnar, and P. Kovar, “Low-Level Process Modelling in the

OPNET Modeler Simulation Environment,” Electronics Sozopol,
Bulgaria, September 2007.

[12] R. Housley, and T. Polk, Planning for PKI, Vol. 1. New York:
Wiley, 2001.

[13] J. Leia, X. Fua, D. Hogrefea, and J. Tanbrotor, “Comparative
studies on authentication and key exchange methods for 802.11
wireless LAN,” in computers and security, Pages 401-9, 2007.

[14] W. Simpson. RFC 1994 “PPP Challenge Handshake
Authentication Protocol (CHAP),” [Online]. August 1996
Available: http://tools.ietf.org/html/rfc1994.

[15] S. Convery, Network Security Architecture, vol. I. Cisco Press,
2004, p. 112.

